Faculty Submitting: James Grinias

Specify here whether "Pre" or "End" of Unit and the Unit #: End Unit 8

LOs:	
Describe	the kinetic molecular theory of gases and how it predicts the macroscopic behavior of gases
Qualitativ	ely predict the behavior of gases based on the simple gas laws, and perform quantitative
calculatio	ns using the Ideal Gas Law
Perform c	valculations for mixtures of gases using Dalton's Law and the concept of a mole fraction
1 стјотт с	acculations for mixtures of gases using Dation's Law and the concept of a mole fraction
Unit 8	Canvas Question Type: Formula
Ouestion	Cuntus Question Typer Forman
Question	
1	
	A typical barometric pressure in Denver, Colorado, is [x] mm Hg. What is this pressure in
	atmospheres?
	Answer: 0.0013158*x
	Let $[x]$ vary from 605.0 to 625.0 by 0.1.
D 1	
Read	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure#1s-idp18996/312
More	
Unit 8_	Canvas Question Type: Formula
Question	
2	
	A typical barometric pressure in Denver, Colorado, is [x] mm Hg. What is this pressure in bar?
	Answer: 0.001333*x
	Let [x] vary from 605.0 to 625.0 by 0.1.
Read	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure#fs-idp189967312
More	
Unit 8_	Canvas Question Type: Formula
Ouestion	
3	
5	
	A typical harometric pressure in Denver, Colorado, is [x] mm Ho. What is this pressure in
	¹ Up 9
	ΝΓ α:
	Answer: 0 1333*v

	Let [x] vary from 605.0 to 625.0 by 0.1.		
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure#fs-idp189967312		
Unit 8_ Question 4	Canvas Question Type: Formula		
	A typical barometric pressure in Denver, Colorado, is [x] mm Hg. What is this pressure in psi?		
	Answer: 0.0193*x		
	Let [x] vary from 605.0 to 625.0 by 0.1.		
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure#fs-idp189967312		
Unit 8_ Question 5	Canvas Question Type: Formula		
	A medical laboratory catalog describes the pressure in a cylinder of a gas as [x] MPa. What is this pressure in psi?		
	Answer: 145.08*x		
	Let [x] vary from 14.00 to 16.00 by 0.01.		
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure#fs-idp189967312		
Unit 8_ Question 6	Canvas Question Type: Numeric		
	Gast Closed end		

	ALT TEXT: The figure shows a closed-end manometer. The column mercury on the side open to the gas chamber is lower than the column of mercury on the closed-end. The difference
	between the two columns is 26.4 cm
	The pressure of a sample of gas is measured at sea level with a closed-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg, determine the pressure of the gas in torr.
	264 torr
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure
Unit 8_ Question 7	Canvas Question Type: Numeric
	Closed end
	Cas 26.4 cm
	ALT TEXT: The figure shows a closed-end manometer. The column mercury on the side open to the gas chamber is lower than the column of mercury on the closed-end. The difference between the two columns is 26.4 cm
	The pressure of a sample of gas is measured at sea level with a closed-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg, determine the pressure of the gas in atm.
	0.347 atm
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure
Unit 8_ Question 8	Canvas Question Type: Numeric

	Closed end
	Gas 26.4 cm
	ALT TEXT: The figure shows a closed-end manometer. The column mercury on the side open to the gas chamber is lower than the column of mercury on the closed-end. The difference between the two columns is 26.4 cm
	The pressure of a sample of gas is measured at sea level with a closed-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg, determine the pressure of the gas in kPa.
	35.2 kPa
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure
Unit 8_ Question 9	Canvas Question Type: Numeric
	Closed end Closed end 26.4 cm
	ALT TEXT: The figure shows a closed-end manometer. The column mercury on the side open to the gas chamber is lower than the column of mercury on the closed-end. The difference between the two columns is 26.4 cm The pressure of a sample of gas is measured at sea level with a closed-end manometer. The
	liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg, determine the pressure of the gas in bar.
	0.352 bar

	ALT TEXT: The figure shows an open-end manometer. The column mercury on the side open to the gas chamber is lower than the column of mercury on the side open to the atmosphere. The difference between the two columns is 26.4 cm	
	The pressure of a sample of gas is measured at sea level with a open-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg, determine the pressure of the gas in kPa	
	136.5 kPa	
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure	
Unit 8_ Question 13	Canvas Question Type: Numeric	
	Open end	
	Gas 26.4 cm	
	ALT TEXT: The figure shows an open-end manometer. The column mercury on the side open to the gas chamber is lower than the column of mercury on the side open to the atmosphere. The difference between the two columns is 26.4 cm	
	The pressure of a sample of gas is measured at sea level with a open-end manometer. The liquid in the manometer is mercury. Assuming atmospheric pressure is 760.0 mm Hg, determine the pressure of the gas in bar	
	1.365 bar	
Read More	https://openstax.org/books/chemistry-2e/pages/9-1-gas-pressure	

Unit 8_	Canvas Question Type: Formula
Question	
14	
	A spray can is used until it is empty except for the propellant gas, which has a pressure of [a]
	torr at [b] °C. If the can is thrown into a fire (T = [c] °C), what will be the pressure in the hot
	can (in torr)?
	Answer: (a*(c+273))/(b+273)
	Let [a] range from $1340 - 1370$ torr (vary by 1), let [b] range from $20.0 - 25.0$ (vary by 0.1),
	let [c] range from 460 – 480 (vary by 1).
Read	https://openstax.org/books/chemistry-2e/pages/9-2-relating-pressure-volume-amount-and-
More	temperature-the-ideal-gas-law#CNX_Chem_09_02_Amontons2
Unit 8_	Canvas Question Type: Formula
Question	
15	
	A balloon inflated with [a] breaths of air has a volume of [b] L. At the same temperature and
	pressure, what is the volume of the balloon if [5] more same-sized breaths are added to the
	balloon?
	Answer: $b+((c^*b)/a)$
	Let $[a]$ range from $2 - 7$ (very by 1) let $[b]$ range from 1.5 to 2.5 (very by 0.1) let $[c]$ range
	$\frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
	110 III 2 = 7 (vary by 1).
Read	https://openstax.org/books/chemistry-2e/pages/9-2-relating-pressure-volume-amount-and-
More	temperature-the-ideal-gas-law
WIOIC	temperature-ute-ideal-gas-iaw
Unit 8_	Canvas Question Type: Formula
Ouestion	
16	
10	
	How many grams of CO ₂ are present if a [a] L vessel of gas is at [b] torr and [c] °C?
	Answer: (a*(b/760)*44)/(.0821*(c+273))
	J_{ab} [a] row on from 0.080 to 0.120 (years have 0.001). Let [b] row on from 200 220 (years have 1)
	Let [a] range from 0.080 to 0.120 (vary by 0.001), let [b] range from $290 - 320$ (vary by 1),
	and let [c] range from $20 - 30$ (vary by 1).
Dood	https://opanetex.org/books/shamistry_20/pages/0.2 relating pressure values around and
Man	nups.//opensiax.org/oooks/chemisuy-2e/pages/9-2-relating-pressure-volume-amount-and-
Nore	temperature-tne-ideai-gas-law

X7: 4	Verteber heter //werteber //CETTee	1
video	Youtube: <u>https://youtu.de/ICFUV0_1JEs</u>	
	Gunve:	
Unit 8_	Canvas Question Type: Formula	
Question		
17		
	How many grams of C_2H_4 are present if a [a] L vessel of gas is at [b] kPa and [c] K?	
	$\Delta n_{\rm current} (a*(b/101.225)*29)/(.0921*a)$	
	Allswei. (a' (0/101.525)' 28)/(.0821'C)	
	Let [a] range from 8.00 to 9.00 (vary by 0.01), let [b] range from 360 – 390 (vary by 1), and	
	let [c] range from $20 - 30$ (vary by 1).	
Read	https://openstax.org/books/chemistry-2e/pages/9-2-relating-pressure-volume-amount-and-	
More	temperature-the-ideal-gas-law	
I	Course Oresting Trans. English	
Unit 8_	Canvas Question Type: Formula	Commented [KMA3]: Double check this answer seems
Question		Sindi
18		
	How many grams of Ar are present if a [a] mL vessel of gas is at [b] mm Hg and [c] °C?	
	Answer: ((a/1000)*(b/760)*39.95)/(.0821*(c+273))	
	Let [a] range from 200 to 240 (vary by 1) let [b] range from $0.20 - 0.50$ (vary by 0.01) and	Commonted [KMA4]: This same like a very small
	Let $[a]$ range from 60.0 $(vary by 0.1)$, let $[b]$ range from 0.20 $(vary by 0.01)$, and	pressure mmHg: swapped out for 200 to 500
	tet [c] fange from -00.050.0 (vary by 0.1)	
Read	https://openstax.org/books/chemistry-2e/pages/9-2-relating-pressure-volume-amount-and-	
More	temperature-the-ideal-gas-law	
Unit 8_	Canvas Question Type: Formula	
Ouestion		
2		
19		
19	While resting the average 70-kg human consumes [a] L of pure Ω_2 per hour at 25 °C and 100	
19	While resting, the average 70-kg human consumes [a] L of pure O_2 per hour at 25 °C and 100 kPa. How many moles of O_2 are consumed by a 70 kg person while resting for 1.0 h?	
19	While resting, the average 70-kg human consumes [a] L of pure O_2 per hour at 25 °C and 100 kPa. How many moles of O_2 are consumed by a 70 kg person while resting for 1.0 h?	
19	While resting, the average 70-kg human consumes [a] L of pure O_2 per hour at 25 °C and 100 kPa. How many moles of O_2 are consumed by a 70 kg person while resting for 1.0 h? Answer: a*100/101.325/(0.08206*298.15)	
19	While resting, the average 70-kg human consumes [a] L of pure O_2 per hour at 25 °C and 100 kPa. How many moles of O_2 are consumed by a 70 kg person while resting for 1.0 h? Answer: a*100/101.325/(0.08206*298.15)	
19	While resting, the average 70-kg human consumes [a] L of pure O ₂ per hour at 25 °C and 100 kPa. How many moles of O ₂ are consumed by a 70 kg person while resting for 1.0 h? Answer: a*100/101.325/(0.08206*298.15) Let [a] range from 13.50 – 14.50 (vary by 0.01).	
19 Read	While resting, the average 70-kg human consumes [a] L of pure O ₂ per hour at 25 °C and 100 kPa. How many moles of O ₂ are consumed by a 70 kg person while resting for 1.0 h? Answer: a*100/101.325/(0.08206*298.15) Let [a] range from 13.50 – 14.50 (vary by 0.01).	
Read More	While resting, the average 70-kg human consumes [a] L of pure O2 per hour at 25 °C and 100 kPa. How many moles of O2 are consumed by a 70 kg person while resting for 1.0 h? Answer: a*100/101.325/(0.08206*298.15) Let [a] range from 13.50 – 14.50 (vary by 0.01). https://openstax.org/books/chemistry-2e/pages/9-2-relating-pressure-volume-amount-and-temperature-the-ideal-gas-law	

Unit 8_	Canvas Question Type: Formula	
Question 20		
20		
	What is the molar mass of a gas if [a] g of the gas occupies a volume of [b] mL at a	
	temperature [c] °C and a pressure of [d] torr?	
	Answer: (a*.0821*(c+273))/((d/760)*(b/1000))	
	Let $[a] = 0.275 - 0.295$ (vary by 0.001), let $[b] = 120 - 140$ (vary by 1), let $[c] = 120 - 140$ (vary by 1), let $[d] = 765 - 785$ (vary by 1)	
Read	https://openstax.org/books/chemistry-2e/pages/9-3-stoichiometry-of-gaseous-substances-	
More	mixtures-and-reactions	
Video	Youtube: <u>https://youtu.be/SqkOQYPOVQk</u>	
	Gdrive: https://drive.google.com/file/d/12VV-	
	iOSIWRA1IrZL2ai9gk26KCu9HfSk/view?usp=sharing	
Unit 8_	Canvas Question Type: Formula	
Question		
21		
	A sample of gas isolated from unrefined petroleum contains 90.0% CH ₄ , 8.9% C ₂ H ₆ , and 1.1%	
	C_3H_8 at a total pressure of [a] kPa. What is the pressure (in kPa) of CH ₄ in the sample?	Commented [KMA5]: Can we assume that students will know that this is percent of total mols instead of percent
	Answer: 0.9*[a]	mass??
	Let $[a] = 270.0 = 370.0$ (vary by 0.1)	
	Lot [u] = 270.0 (70.9 (70.9 (70.9)).	
Read	https://openstax.org/books/chemistry-2e/pages/9-3-stoichiometry-of-gaseous-substances-	
More	mixtures-and-reactions	
Unit 8_	Canvas Question Type: Formula	
Question 22		
	What volume (in L) of average at [a] \mathcal{C} and a pressure of [b] kDs is produced by the	
	what volume (in L) of oxygen at [a] C and a pressure of [b] KPa is produced by the decomposition of [c] g of BaO, to BaO and Ω_2 ?	
	decomposition of [e] g of BaO ₂ to BaO and O ₂ :	
	Answer: (.0821*(a+273)*(c/338.66))/(b/101.325)	
	Let $[a] = 140 - 160$ (vary by 1), let $[b] = 120.0 - 130.0$ (vary by 0.1), let $[c] = 125.0 - 135.0$	
	(vary by 0.1).	
Read	https://openstax.org/books/chemistry-2e/pages/9-3-stoichiometry-of-gaseous-substances-	
More	mixtures-and-reactions	

Unit 8_	Canvas Question Type: Formula	
Question 23		
	A balloon filled with helium gas takes [a] hours to deflate to [b]% of its original volume. How long will it take for an identical balloon filled with the same volume of hydrogen gas (instead of helium) to decrease its volume by [b]%?	
	Answer: [a]/1.4142	
	Let $[a] = 1.0 - 9.9$ (vary by 1), let $[b] = 20 - 80$ (vary by 10)	
Read More	https://openstax.org/books/chemistry-2e/pages/9-4-effusion-and-diffusion-of-gases	
Unit 8_ Question 24	Canvas Question Type: Formula	
	A gas of unknown identity diffuses at a rate of [a] mL/s in a diffusion apparatus in which carbon dioxide diffuses at the rate of [b] mL/s. Calculate the molecular mass of the unknown gas.	
	Answer: 44*(b/a)^2	
	Let $[a] = 80.0 - 90.0$ (vary by 0.1), let $[b] = 101 - 109$ (vary by 1)	
Read More	https://openstax.org/books/chemistry-2e/pages/9-4-effusion-and-diffusion-of-gases	